interpolate
Interpolators for spatial data
Calling Sequence
import pyTMD.interpolate
data = pyTMD.interpolate.bilinear(ilon, ilat, idata, lon, lat)
- pyTMD.interpolate.bilinear(ilon: ~numpy.ndarray, ilat: ~numpy.ndarray, idata: ~numpy.ndarray, lon: ~numpy.ndarray, lat: ~numpy.ndarray, fill_value: float = nan, dtype: str | ~numpy.dtype = <class 'numpy.float64'>)[source]
Bilinear interpolation of input data to output coordinates
- Parameters:
- ilon: np.ndarray
longitude of tidal model
- ilat: np.ndarray
latitude of tidal model
- idata: np.ndarray
tide model data
- lat: np.ndarray
output latitude
- lon: np.ndarray
output longitude
- fill_value: float, default np.nan
invalid value
- dtype: np.dtype, default np.float64
output data type
- Returns:
- data: np.ndarray
interpolated data
- pyTMD.interpolate.spline(ilon: ~numpy.ndarray, ilat: ~numpy.ndarray, idata: ~numpy.ndarray, lon: ~numpy.ndarray, lat: ~numpy.ndarray, fill_value: float = None, dtype: str | ~numpy.dtype = <class 'numpy.float64'>, reducer=<ufunc 'ceil'>, **kwargs)[source]
Bivariate spline interpolation of input data to output coordinates
- Parameters:
- ilon: np.ndarray
longitude of tidal model
- ilat: np.ndarray
latitude of tidal model
- idata: np.ndarray
tide model data
- lat: np.ndarray
output latitude
- lon: np.ndarray
output longitude
- fill_value: float or NoneType, default None
invalid value
- dtype: np.dtype, default np.float64
output data type
- reducer: obj, default np.ceil
operation for converting mask to boolean
- kx: int, default 1
degree of the bivariate spline in the x-dimension
- ky: int, default 1
degree of the bivariate spline in the y-dimension
- kwargs: dict
additional arguments for
scipy.interpolate.RectBivariateSpline
- Returns:
- data: np.ndarray
interpolated data
- pyTMD.interpolate.regulargrid(ilon: ~numpy.ndarray, ilat: ~numpy.ndarray, idata: ~numpy.ndarray, lon: ~numpy.ndarray, lat: ~numpy.ndarray, fill_value: float = None, dtype: str | ~numpy.dtype = <class 'numpy.float64'>, reducer=<ufunc 'ceil'>, **kwargs)[source]
Regular grid interpolation of input data to output coordinates
- Parameters:
- ilon: np.ndarray
longitude of tidal model
- ilat: np.ndarray
latitude of tidal model
- idata: np.ndarray
tide model data
- lat: np.ndarray
output latitude
- lon: np.ndarray
output longitude
- fill_value: float or NoneType, default None
invalid value
- dtype: np.dtype, default np.float64
output data type
- reducer: obj, default np.ceil
operation for converting mask to boolean
- bounds_error: bool, default False
raise Exception when values are requested outside domain
- method: str, default ‘linear’
Method of interpolation
'linear'
'nearest'
'slinear'
'cubic'
'quintic'
- kwargs: dict
additional arguments for
scipy.interpolate.RegularGridInterpolator
- Returns:
- data: np.ndarray
interpolated data
- pyTMD.interpolate.extrapolate(ilon: ~numpy.ndarray, ilat: ~numpy.ndarray, idata: ~numpy.ndarray, lon: ~numpy.ndarray, lat: ~numpy.ndarray, fill_value: float = None, dtype: str | ~numpy.dtype = <class 'numpy.float64'>, cutoff: int | float = inf, is_geographic: bool = True, **kwargs)[source]
Nearest-neighbor (NN) extrapolation of valid model data using kd-trees
- Parameters:
- x: np.ndarray
x-coordinates of tidal model
- y: np.ndarray
y-coordinates of tidal model
- data: np.ndarray
Tide model data
- XI: np.ndarray
Output x-coordinates
- YI: np.ndarray
Output y-coordinates
- fill_value: float, default np.nan
Invalid value
- dtype: np.dtype, default np.float64
Output data type
- cutoff: float, default np.inf
return only neighbors within distance [km]
Set to
np.inf
to extrapolate for all points- is_geographic: bool, default True
input grid is in geographic coordinates
- Returns:
- DATA: np.ndarray
interpolated data