Source code for pyTMD.spatial

#!/usr/bin/env python
u"""
spatial.py
Written by Tyler Sutterley (03/2025)

Spatial transformation routines

PYTHON DEPENDENCIES:
    numpy: Scientific Computing Tools For Python
        https://numpy.org
        https://numpy.org/doc/stable/user/numpy-for-matlab-users.html

UPDATE HISTORY:
    Updated 03/2025: add more ellipsoidal parameters to datum class
    Updated 02/2025: major refactor to move io routines out of this module
    Updated 12/2024: add latitude and longitude as potential dimension names
    Updated 11/2024: added function to calculate the altitude and azimuth
    Updated 09/2024: deprecation fix case where an array is output to scalars
    Updated 08/2024: changed from 'geotiff' to 'GTiff' and 'cog' formats
        added functions to convert to and from East-North-Up coordinates
    Updated 07/2024: added functions to convert to and from DMS
    Updated 06/2024: added function to write parquet files with metadata
    Updated 05/2024: added function to read from parquet files
        allowing for decoding of the geometry column from WKB
        deprecation update to use exceptions with osgeo osr
    Updated 04/2024: use timescale for temporal operations
        use wrapper to importlib for optional dependencies
    Updated 03/2024: can calculate polar stereographic distortion for distances
    Updated 02/2024: changed class name for ellipsoid parameters to datum
    Updated 10/2023: can read from netCDF4 or HDF5 variable groups
        apply no formatting to columns in ascii file output
    Updated 09/2023: add function to invert field mapping keys and values
        use datetime64[ns] for parsing dates from ascii files
    Updated 08/2023: remove possible crs variables from output fields list
        place PyYAML behind try/except statement to reduce build size
    Updated 05/2023: use datetime parser within pyTMD.time module
    Updated 04/2023: copy inputs in cartesian to not modify original arrays
        added iterative methods for converting from cartesian to geodetic
        allow netCDF4 and HDF5 outputs to be appended to existing files
        using pathlib to define and expand paths
    Updated 03/2023: add basic variable typing to function inputs
    Updated 02/2023: use outputs from constants class for WGS84 parameters
        include more possible dimension names for gridded and drift outputs
    Updated 01/2023: added default field mapping for reading from netCDF4/HDF5
        split netCDF4 output into separate functions for grid and drift types
    Updated 12/2022: add software information to output HDF5 and netCDF4
    Updated 11/2022: place some imports within try/except statements
        added encoding for writing ascii files
        use f-strings for formatting verbose or ascii output
    Updated 10/2022: added datetime parser for ascii time columns
    Updated 06/2022: added field_mapping options to netCDF4 and HDF5 reads
        added from_file wrapper function to read from particular formats
    Updated 04/2022: add option to reduce input GDAL raster datasets
        updated docstrings to numpy documentation format
        use gzip virtual filesystem for reading compressed geotiffs
        include utf-8 encoding in reads to be windows compliant
    Updated 03/2022: add option to specify output GDAL driver
    Updated 01/2022: use iteration breaks in convert ellipsoid function
        remove fill_value attribute after creating netCDF4 and HDF5 variables
    Updated 11/2021: added empty cases to netCDF4 and HDF5 output for crs
        try to get grid mapping attributes from netCDF4 and HDF5
    Updated 10/2021: add pole case in stereographic area scale calculation
        using python logging for handling verbose output
    Updated 09/2021: can calculate height differences between ellipsoids
    Updated 07/2021: added function for determining input variable type
    Updated 03/2021: added polar stereographic area scale calculation
        add routines for converting to and from cartesian coordinates
        replaced numpy bool/int to prevent deprecation warnings
    Updated 01/2021: add streaming from bytes for ascii, netCDF4, HDF5, geotiff
        set default time for geotiff files to 0
    Updated 12/2020: added module for converting ellipsoids
    Updated 11/2020: output data as masked arrays if containing fill values
        add functions to read from and write to geotiff image formats
    Written 09/2020
"""
from __future__ import annotations

import warnings
import numpy as np

__all__ = [
    "data_type",
    "datum",
    "convert_ellipsoid",
    "compute_delta_h",
    "wrap_longitudes",
    "to_dms",
    "from_dms",
    "to_cartesian",
    "to_sphere",
    "to_geodetic",
    "_moritz_iterative",
    "_bowring_iterative",
    "_zhu_closed_form",
    "to_ENU",
    "from_ENU",
    "to_horizontal",
    "to_zenith",
    "scale_factors",
]

[docs] def data_type(x: np.ndarray, y: np.ndarray, t: np.ndarray) -> str: """ Determines input data type based on variable dimensions Parameters ---------- x: np.ndarray x-dimension coordinates y: np.ndarray y-dimension coordinates t: np.ndarray time-dimension coordinates Returns ------- string denoting input data type - ``'time series'`` - ``'drift'`` - ``'grid'`` """ xsize = np.size(x) ysize = np.size(y) tsize = np.size(t) if (xsize == 1) and (ysize == 1) and (tsize >= 1): return 'time series' elif (xsize == ysize) & (xsize == tsize): return 'drift' elif (np.ndim(x) > 1) & (xsize == ysize): return 'grid' elif (xsize != ysize): return 'grid' else: raise ValueError('Unknown data type')
_ellipsoids = ['CLK66', 'CLK80', 'GRS67', 'GRS80', 'WGS60', 'WGS66', 'WGS72', 'WGS84', 'ATS77', 'NAD27', 'NAD83', 'INTER', 'KRASS', 'SGS90', 'AIRY', 'MAIRY', 'HLMRT', 'HOUGH', 'HGH80', 'MERIT', 'TOPEX', 'EGM96', 'IAG75', 'IAU64', 'IAU76', 'IERS89', 'IERS'] _units = ['MKS', 'CGS']
[docs] class datum: """ Class for gravitational and ellipsoidal parameters :cite:p:`HofmannWellenhof:2006hy,Urban:2013vl` Parameters ---------- ellipsoid: str, default 'WGS84' Reference ellipsoid name - ``'CLK66'``: Clarke 1866 - ``'CLK80'``: Clarke 1880 - ``'GRS67'``: Geodetic Reference System 1967 - ``'GRS80'``: Geodetic Reference System 1980 - ``'HGH80'``: Hughes 1980 Ellipsoid - ``'WGS60'``: World Geodetic System 1960 - ``'WGS66'``: World Geodetic System 1966 - ``'WGS72'``: World Geodetic System 1972 - ``'WGS84'``: World Geodetic System 1984 - ``'ATS77'``: Quasi-earth centred ellipsoid for ATS77 - ``'NAD27'``: North American Datum 1927 - ``'NAD83'``: North American Datum 1983 - ``'INTER'``: International - ``'KRASS'``: Krassovsky (USSR) - ``'SGS90'``: Soviet Geodetic System 1990 - ``'HLMRT'``: Helmert 1906 Ellipsoid - ``'HOUGH'``: Hough 1960 Ellipsoid - ``'AIRY'``: Airy (1830) - ``'MAIRY'``: Modified Airy (1849) - ``'MERIT'``: MERIT 1983 ellipsoid - ``'TOPEX'``: TOPEX/POSEIDON ellipsoid - ``'EGM96'``: EGM 1996 gravity model - ``'IAG75'``: International Association of Geodesy (1975) - ``'IAU64'``: International Astronomical Union (1964) - ``'IAU76'``: International Astronomical Union (1976) - ``'IERS89'``: IERS Numerical Standards (1989) - ``'IERS'``: IERS Numerical Standards (2010) units: str, default `MKS` Output units - ``'MKS'``: meters, kilograms, seconds - ``'CGS'``: centimeters, grams, seconds Attributes ---------- a_axis: float Semi-major axis of the ellipsoid flat: float Flattening of the ellipsoid omega: float Angular velocity of the Earth GM: float Geocentric gravitational constant """ np.seterr(invalid='ignore') def __init__(self, **kwargs): # set default keyword arguments kwargs.setdefault('ellipsoid', 'WGS84') kwargs.setdefault('units', 'MKS') kwargs.setdefault('a_axis', None) kwargs.setdefault('flat', None) kwargs.setdefault('GM', None) kwargs.setdefault('omega', None) # set ellipsoid name and units self.units = kwargs['units'].upper() if ((kwargs['a_axis'] is not None) and (kwargs['flat'] is not None)): self.name = 'user_defined' else: self.name = kwargs['ellipsoid'].upper() # validate ellipsoid and units assert self.name in _ellipsoids + ['user_defined'] assert self.units in _units # set parameters for ellipsoid if self.name in ('CLK66', 'NAD27'): # Clarke 1866 self.a_axis = 6378206.4# [m] semimajor axis of the ellipsoid self.flat = 1.0/294.9786982# flattening of the ellipsoid elif (self.name == 'CLK80'): # Clarke 1880 self.a_axis = 6378249.145# [m] semimajor axis of the ellipsoid self.flat = 1.0/293.465# flattening of the ellipsoid elif self.name in ('GRS80', 'NAD83'): # Geodetic Reference System 1980 # North American Datum 1983 self.a_axis = 6378135.0# [m] semimajor axis of the ellipsoid self.flat = 1.0/298.26# flattening of the ellipsoid self.GM = 3.986005e14# [m^3/s^2] Geocentric Gravitational Constant elif (self.name == 'GRS67'): # Geodetic Reference System 1967 self.a_axis = 6378160.0# [m] semimajor axis of the ellipsoid self.flat = 1.0/298.247167427# flattening of the ellipsoid self.GM = 3.98603e14# [m^3/s^2] Geocentric Gravitational Constant self.omega = 7292115.1467e-11# angular velocity of the Earth [rad/s] elif (self.name == 'WGS60'): # World Geodetic System 1960 self.a_axis = 6378165.0# [m] semimajor axis of the ellipsoid self.flat = 1.0/298.30# flattening of the ellipsoid elif (self.name == 'WGS66'): # World Geodetic System 1966 self.a_axis = 6378145.0# [m] semimajor axis of the ellipsoid self.flat = 1.0/298.25# flattening of the ellipsoid elif (self.name == 'WGS72'): # World Geodetic System 1972 self.a_axis = 6378135.0# [m] semimajor axis of the ellipsoid self.flat = 1.0/298.26# flattening of the ellipsoid elif (self.name == 'WGS84'): # World Geodetic System 1984 self.a_axis = 6378137.0# [m] semimajor axis of the ellipsoid self.flat = 1.0/298.257223563# flattening of the ellipsoid elif (self.name == 'ATS77'): # Quasi-earth centred ellipsoid for ATS77 self.a_axis = 6378135.0# [m] semimajor axis of the ellipsoid self.flat = 1.0/298.257# flattening of the ellipsoid elif (self.name == 'KRASS'): # Krassovsky (USSR) self.a_axis = 6378245.0# [m] semimajor axis of the ellipsoid self.flat = 1.0/298.3# flattening of the ellipsoid elif (self.name == 'SGS90'): # Soviet Geodetic System 1990 self.a_axis = 6378136.0# [m] semimajor axis of the ellipsoid self.flat = 1.0/298.2578393# flattening of the ellipsoid elif (self.name == 'INTER'): # International 1924 self.a_axis = 6378388.0# [m] semimajor axis of the ellipsoid self.flat = 1/297.0# flattening of the ellipsoid elif (self.name == 'AIRY'): # Airy 1830 Ellipsoid self.a_axis = 6377563.396# [m] semimajor axis of the ellipsoid self.flat = 1/299.3249646# flattening of the ellipsoid elif (self.name == 'MAIRY'): # Modified Airy 1849 Ellipsoid self.a_axis = 6377340.189# [m] semimajor axis of the ellipsoid self.flat = 1/299.3249646# flattening of the ellipsoid elif (self.name == 'HLMRT'): # Helmert 1906 Ellipsoid self.a_axis = 6378200.0# [m] semimajor axis of the ellipsoid self.flat = 1.0/298.3# flattening of the ellipsoid elif (self.name == 'HOUGH'): # Hough 1960 Ellipsoid self.a_axis = 6378270.0# [m] semimajor axis of the ellipsoid self.flat = 1.0/297.0# flattening of the ellipsoid elif (self.name == 'HGH80'): # Hughes 1980 Ellipsoid self.a_axis = 6378273.0# [m] semimajor axis of the ellipsoid self.flat = 1.0/298.279411123064# flattening of the ellipsoid elif (self.name == 'MERIT'): # MERIT 1983 ellipsoid self.a_axis = 6378137.0# [m] semimajor axis of the ellipsoid self.flat = 1.0/298.257# flattening of the ellipsoid elif (self.name == 'TOPEX'): # TOPEX/POSEIDON ellipsoid self.a_axis = 6378136.3# [m] semimajor axis of the ellipsoid self.flat = 1.0/298.257# flattening of the ellipsoid self.GM = 3.986004415e14# [m^3/s^2] elif (self.name == 'EGM96'): # EGM 1996 gravity model self.a_axis = 6378136.3# [m] semimajor axis of the ellipsoid self.flat = 1.0/298.256415099# flattening of the ellipsoid self.GM = 3.986004415e14# [m^3/s^2] elif (self.name == 'IAG75'): # International Association of Geodesy (IAG 1975) self.a_axis = 6378140.0# [m] semimajor axis of the ellipsoid self.flat = 1.0/298.257# flattening of the ellipsoid elif (self.name == 'IAU64'): # International Astronomical Union (IAU 1964) self.a_axis = 6378160.0# [m] semimajor axis of the ellipsoid self.flat = 1.0/298.25# flattening of the ellipsoid elif (self.name == 'IAU76'): # International Astronomical Union (IAU 1964) self.a_axis = 6378140.0# [m] semimajor axis of the ellipsoid self.flat = 1.0/298.257# flattening of the ellipsoid elif (self.name == 'IERS89'): # IERS Numerical Standards (1989) self.a_axis = 6378136.0# [m] semimajor axis of the ellipsoid self.flat = 1.0/298.257# flattening of the ellipsoid elif (self.name == 'IERS'): # IERS Numerical Standards (2010) self.a_axis = 6378136.6# [m] semimajor axis of the ellipsoid self.flat = 1.0/298.25642# flattening of the ellipsoid elif (self.name == 'user_defined'): # custom datum self.a_axis = np.float64(kwargs['a_axis']) self.flat = np.float64(kwargs['flat']) # set default parameters if not listed as part of ellipsoid # Geocentric Gravitational Constant if kwargs['GM'] is not None: # user defined Geocentric Gravitational Constant self.GM = np.float64(kwargs['GM']) elif self.name not in ('GRS80', 'GRS67', 'NAD83', 'TOPEX', 'EGM96'): # for ellipsoids not listing the Geocentric Gravitational Constant self.GM = 3.986004418e14# [m^3/s^2] # angular velocity of the Earth if kwargs['omega'] is not None: # user defined angular velocity of the Earth self.omega = np.float64(kwargs['omega']) elif self.name not in ('GRS67'): # for ellipsoids not listing the angular velocity of the Earth self.omega = 7292115e-11# [rad/s] # universal gravitational constant [N*m^2/kg^2] self.G = 6.67430e-11 # standard gravitational acceleration [m/s^2] # (World Meteorological Organization) self.gamma = 9.80665 # convert units to CGS if (self.units == 'CGS'): self.a_axis *= 100.0 self.GM *= 1e6 self.G *= 1000.0 # [dyn*cm^2/g^2] self.gamma *= 100.0 # mean radius of the Earth having the same volume # (4pi/3)R^3 = (4pi/3)(a^2)b = (4pi/3)(a^3)(1 - f) @property def rad_e(self) -> float: """Average radius of the Earth with same volume as ellipsoid """ return self.a_axis*(1.0 - self.flat)**(1.0/3.0) # semiminor axis of the ellipsoid @property def b_axis(self) -> float: """Semi-minor axis of the ellipsoid """ return (1.0 - self.flat)*self.a_axis # Ratio between ellipsoidal axes @property def ratio(self) -> float: """Ratio between ellipsoidal axes """ return (1.0 - self.flat) # Polar radius of curvature @property def rad_p(self) -> float: """Polar radius of curvature """ return self.a_axis/(1.0 - self.flat) # Linear eccentricity @property def ecc(self) -> float: """Linear eccentricity """ return np.sqrt((2.0*self.flat - self.flat**2)*self.a_axis**2) # first numerical eccentricity @property def ecc1(self) -> float: """First numerical eccentricity """ return self.ecc/self.a_axis # second numerical eccentricity @property def ecc2(self) -> float: """Second numerical eccentricity """ return self.ecc/self.b_axis # m parameter [omega^2*a^2*b/(GM)] # p. 70, Eqn.(2-137) @property def m(self) -> float: """m Parameter """ return self.omega**2*((1 - self.flat)*self.a_axis**3)/self.GM # flattening f2 component # p. 80, Eqn.(2-200) @property def f2(self) -> float: """f2 component """ return -self.flat + (5.0/2.0)*self.m + (1.0/2.0)*self.flat**2.0 - \ (26.0/7.0)*self.flat*self.m + (15.0/4.0)*self.m**2.0 # flattening f4 component # p. 80, Eqn.(2-200) @property def f4(self) -> float: """f4 component """ return -(1.0/2.0)*self.flat**2.0 + (5.0/2.0)*self.flat*self.m # q # p. 67, Eqn.(2-113) @property def q(self) -> float: """q Parameter """ return 0.5*((1.0 + 3.0/(self.ecc2**2))*np.arctan(self.ecc2)-3.0/self.ecc2) # q_0 # p. 67, Eqn.(2-113) @property def q0(self) -> float: r"""q\ :sub:`0` Parameter """ return 3*(1.0 + 1.0/(self.ecc2**2)) * \ (1.0 -1.0/self.ecc2*np.arctan(self.ecc2)) - 1.0 # J_2 p. 75 Eqn.(2-167), p. 76 Eqn.(2-172) @property def J2(self) -> float: """Oblateness coefficient """ return (self.ecc1**2)*(1.0 - 2.0*self.m*self.ecc2/(15.0*self.q))/3.0 # Normalized C20 harmonic # p. 60, Eqn.(2-80) @property def C20(self) -> float: r"""Normalized C\ :sub:`20` harmonic """ return -self.J2/np.sqrt(5.0) # Normal gravity at the equator # p. 79, Eqn.(2-286) @property def gamma_a(self) -> float: """Normal gravity at the equator """ return (self.GM/(self.a_axis*self.b_axis)) * \ (1.0 - (3.0/2.0)*self.m - (3.0/14.0)*self.ecc2**2.0*self.m) # Normal gravity at the pole # p. 79, Eqn.(2-286) @property def gamma_b(self) -> float: """Normal gravity at the pole """ return (self.GM/(self.a_axis**2)) * \ (1.0 + self.m + (3.0/7.0)*self.ecc2**2.0*self.m) # Normal gravity at location # p. 80, Eqn.(2-199)
[docs] def gamma_0(self, theta) -> float: """Normal gravity at colatitudes Parameters ---------- theta: float Colatitudes in radians """ return self.gamma_a*(1.0 + self.f2*np.cos(theta)**2.0 + self.f4*np.cos(theta)**4.0)
# Normal gravity at location # p. 82, Eqn.(2-215)
[docs] def gamma_h(self, theta, height) -> float: """Normal gravity at colatitudes and heights Parameters ---------- theta: float Colatitudes in radians height: float Height above ellipsoid """ return self.gamma_0(theta) * \ (1.0 - (2.0/self.a_axis) * \ (1.0 + self.flat + self.m - 2.0*self.flat*np.cos(theta)**2.0)*height + (3.0/self.a_axis**2.0)*height**2.0)
# ratio between gravity at pole versus gravity at equator @property def dk(self) -> float: """Ratio between gravity at pole versus gravity at equator """ return self.b_axis*self.gamma_b/(self.a_axis*self.gamma_b) - 1.0 # Normal potential at the ellipsoid # p. 68, Eqn.(2-123) @property def U0(self) -> float: """Normal potential at the ellipsoid """ return self.GM/self.ecc*np.arctan(self.ecc2) + \ (1.0/3.0)*self.omega**2*self.a_axis**2 # Surface area of the reference ellipsoid @property def area(self) -> float: """Surface area of the ellipsoid """ return np.pi*self.a_axis**2.0 * \ (2.0 + ((1.0 - self.ecc1**2)/self.ecc1) * np.log((1.0 + self.ecc1)/(1.0 - self.ecc1))) # Volume of the reference ellipsoid @property def volume(self) -> float: """Volume of the ellipsoid """ return (4.0*np.pi/3.0)*(self.a_axis**3.0)*(1.0 - self.ecc1**2.0)**0.5 # Average density @property def rho_e(self) -> float: """Average density """ return self.GM/(self.G*self.volume) def __str__(self): """String representation of the ``datum`` object """ properties = ['pyTMD.datum'] properties.append(f" name: {self.name}") properties.append(f" units: {self.units}") return '\n'.join(properties) def __getitem__(self, key): return getattr(self, key) def __setitem__(self, key, value): setattr(self, key, value)
[docs] def convert_ellipsoid( lat1: np.ndarray, h1: np.ndarray, a1: float, f1: float, a2: float, f2: float, eps: float = 1e-12, itmax: int = 10 ): """ Convert latitudes and heights to a different ellipsoid using Newton-Raphson :cite:p:`Meeus:1991vh` Parameters ---------- lat1: np.ndarray latitude of input ellipsoid in degrees h1: np.ndarray height above input ellipsoid in meters a1: float semi-major axis of input ellipsoid f1: float flattening of input ellipsoid a2: float semi-major axis of output ellipsoid f2: float flattening of output ellipsoid eps: float, default 1e-12 tolerance to prevent division by small numbers and to determine convergence itmax: int, default 10 maximum number of iterations to use in Newton-Raphson Returns ------- lat2: np.ndarray latitude of output ellipsoid in degrees h2: np.ndarray height above output ellipsoid in meters """ if (len(lat1) != len(h1)): raise ValueError('lat and h have incompatible dimensions') # semiminor axis of input and output ellipsoid b1 = (1.0 - f1)*a1 b2 = (1.0 - f2)*a2 # initialize output arrays npts = len(lat1) lat2 = np.zeros((npts)) h2 = np.zeros((npts)) # for each point for N in range(npts): # force lat1 into range -90 <= lat1 <= 90 if (np.abs(lat1[N]) > 90.0): lat1[N] = np.sign(lat1[N])*90.0 # handle special case near the equator # lat2 = lat1 (latitudes congruent) # h2 = h1 + a1 - a2 if (np.abs(lat1[N]) < eps): lat2[N] = np.copy(lat1[N]) h2[N] = h1[N] + a1 - a2 # handle special case near the poles # lat2 = lat1 (latitudes congruent) # h2 = h1 + b1 - b2 elif ((90.0 - np.abs(lat1[N])) < eps): lat2[N] = np.copy(lat1[N]) h2[N] = h1[N] + b1 - b2 # handle case if latitude is within 45 degrees of equator elif (np.abs(lat1[N]) <= 45): # convert lat1 to radians lat1r = lat1[N] * np.pi/180.0 sinlat1 = np.sin(lat1r) coslat1 = np.cos(lat1r) # prevent division by very small numbers coslat1 = np.copy(eps) if (coslat1 < eps) else coslat1 # calculate tangent tanlat1 = sinlat1 / coslat1 u1 = np.arctan(b1 / a1 * tanlat1) hpr1sin = b1 * np.sin(u1) + h1[N] * sinlat1 hpr1cos = a1 * np.cos(u1) + h1[N] * coslat1 # set initial value for u2 u2 = np.copy(u1) # setup constants k0 = b2 * b2 - a2 * a2 k1 = a2 * hpr1cos k2 = b2 * hpr1sin # perform newton-raphson iteration to solve for u2 # cos(u2) will not be close to zero since abs(lat1) <= 45 for i in range(0, itmax+1): cosu2 = np.cos(u2) fu2 = k0 * np.sin(u2) + k1 * np.tan(u2) - k2 fu2p = k0 * cosu2 + k1 / (cosu2 * cosu2) if (np.abs(fu2p) < eps): break else: delta = fu2 / fu2p u2 -= delta if (np.abs(delta) < eps): break # convert latitude to degrees and verify values between +/- 90 lat2r = np.arctan(a2 / b2 * np.tan(u2)) lat2[N] = lat2r*180.0/np.pi if (np.abs(lat2[N]) > 90.0): lat2[N] = np.sign(lat2[N])*90.0 # calculate height h2[N] = (hpr1cos - a2 * np.cos(u2)) / np.cos(lat2r) # handle final case where latitudes are between 45 degrees and pole else: # convert lat1 to radians lat1r = lat1[N] * np.pi/180.0 sinlat1 = np.sin(lat1r) coslat1 = np.cos(lat1r) # prevent division by very small numbers coslat1 = np.copy(eps) if (coslat1 < eps) else coslat1 # calculate tangent tanlat1 = sinlat1 / coslat1 u1 = np.arctan(b1 / a1 * tanlat1) hpr1sin = b1 * np.sin(u1) + h1[N] * sinlat1 hpr1cos = a1 * np.cos(u1) + h1[N] * coslat1 # set initial value for u2 u2 = np.copy(u1) # setup constants k0 = a2 * a2 - b2 * b2 k1 = b2 * hpr1sin k2 = a2 * hpr1cos # perform newton-raphson iteration to solve for u2 # sin(u2) will not be close to zero since abs(lat1) > 45 for i in range(0, itmax+1): sinu2 = np.sin(u2) fu2 = k0 * np.cos(u2) + k1 / np.tan(u2) - k2 fu2p = -1 * (k0 * sinu2 + k1 / (sinu2 * sinu2)) if (np.abs(fu2p) < eps): break else: delta = fu2 / fu2p u2 -= delta if (np.abs(delta) < eps): break # convert latitude to degrees and verify values between +/- 90 lat2r = np.arctan(a2 / b2 * np.tan(u2)) lat2[N] = lat2r*180.0/np.pi if (np.abs(lat2[N]) > 90.0): lat2[N] = np.sign(lat2[N])*90.0 # calculate height h2[N] = (hpr1sin - b2 * np.sin(u2)) / np.sin(lat2r) # return the latitude and height return (lat2, h2)
[docs] def compute_delta_h( lat: np.ndarray, a1: float, f1: float, a2: float, f2: float ): """ Compute difference in elevation for two ellipsoids at a given latitude using a simplified empirical relation :cite:p:`Meeus:1991vh` Parameters ---------- lat: np.ndarray latitudes (degrees north) a1: float semi-major axis of input ellipsoid f1: float flattening of input ellipsoid a2: float semi-major axis of output ellipsoid f2: float flattening of output ellipsoid Returns ------- delta_h: np.ndarray difference in elevation for two ellipsoids """ # force latitudes to be within -90 to 90 and convert to radians phi = np.clip(lat, -90.0, 90.0)*np.pi/180.0 # semi-minor axis of input and output ellipsoid b1 = (1.0 - f1)*a1 b2 = (1.0 - f2)*a2 # compute differences in semi-major and semi-minor axes delta_a = a2 - a1 delta_b = b2 - b1 # compute differences between ellipsoids # delta_h = -(delta_a * cos(phi)^2 + delta_b * sin(phi)^2) delta_h = -(delta_a*np.cos(phi)**2 + delta_b*np.sin(phi)**2) return delta_h
[docs] def wrap_longitudes(lon: float | np.ndarray): """ Wraps longitudes to range from -180 to +180 Parameters ---------- lon: float or np.ndarray longitude (degrees east) """ phi = np.arctan2(np.sin(lon*np.pi/180.0), np.cos(lon*np.pi/180.0)) # convert phi from radians to degrees return phi*180.0/np.pi
[docs] def to_dms(d: np.ndarray): """ Convert decimal degrees to degrees, minutes and seconds Parameters ---------- d: np.ndarray decimal degrees Returns ------- degree: np.ndarray degrees minute: np.ndarray minutes (arcminutes) second: np.ndarray seconds (arcseconds) """ sign = np.sign(d) minute, second = np.divmod(np.abs(d)*3600.0, 60.0) degree, minute = np.divmod(minute, 60.0) return (sign*degree, minute, second)
[docs] def from_dms( degree: np.ndarray, minute: np.ndarray, second: np.ndarray ): """ Convert degrees, minutes and seconds to decimal degrees Parameters ---------- degree: np.ndarray degrees minute: np.ndarray minutes (arcminutes) second: np.ndarray seconds (arcseconds) Returns ------- d: np.ndarray decimal degrees """ sign = np.sign(degree) d = np.abs(degree) + minute/60.0 + second/3600.0 return sign*d
# get WGS84 parameters _wgs84 = datum(ellipsoid='WGS84', units='MKS')
[docs] def to_cartesian( lon: np.ndarray, lat: np.ndarray, h: float | np.ndarray = 0.0, a_axis: float = _wgs84.a_axis, flat: float = _wgs84.flat ): """ Converts geodetic coordinates to Cartesian coordinates Parameters ---------- lon: np.ndarray longitude (degrees east) lat: np.ndarray latitude (degrees north) h: float or np.ndarray, default 0.0 height above ellipsoid (or sphere) a_axis: float, default 6378137.0 semimajor axis of the ellipsoid for spherical coordinates set to radius of the Earth flat: float, default 1.0/298.257223563 ellipsoidal flattening for spherical coordinates set to 0 """ # verify axes and copy to not modify inputs singular_values = (np.ndim(lon) == 0) lon = np.atleast_1d(np.copy(lon)).astype(np.float64) lat = np.atleast_1d(np.copy(lat)).astype(np.float64) # fix coordinates to be 0:360 lon[lon < 0] += 360.0 # Linear eccentricity and first numerical eccentricity lin_ecc = np.sqrt((2.0*flat - flat**2)*a_axis**2) ecc1 = lin_ecc/a_axis # convert from geodetic latitude to geocentric latitude dtr = np.pi/180.0 # geodetic latitude in radians latitude_geodetic_rad = lat*dtr # prime vertical radius of curvature N = a_axis/np.sqrt(1.0 - ecc1**2.0*np.sin(latitude_geodetic_rad)**2.0) # calculate X, Y and Z from geodetic latitude and longitude X = (N + h) * np.cos(latitude_geodetic_rad) * np.cos(lon*dtr) Y = (N + h) * np.cos(latitude_geodetic_rad) * np.sin(lon*dtr) Z = (N * (1.0 - ecc1**2.0) + h) * np.sin(latitude_geodetic_rad) # return the cartesian coordinates # flattened to singular values if necessary if singular_values: return (X[0], Y[0], Z[0]) else: return (X, Y, Z)
[docs] def to_sphere(x: np.ndarray, y: np.ndarray, z: np.ndarray): """ Convert from cartesian coordinates to spherical coordinates Parameters ---------- x, np.ndarray cartesian x-coordinates y, np.ndarray cartesian y-coordinates z, np.ndarray cartesian z-coordinates """ # verify axes and copy to not modify inputs singular_values = (np.ndim(x) == 0) x = np.atleast_1d(np.copy(x)).astype(np.float64) y = np.atleast_1d(np.copy(y)).astype(np.float64) z = np.atleast_1d(np.copy(z)).astype(np.float64) # calculate radius rad = np.sqrt(x**2.0 + y**2.0 + z**2.0) # calculate angular coordinates # phi: azimuthal angle phi = np.arctan2(y, x) # th: polar angle th = np.arccos(z/rad) # convert to degrees and fix to 0:360 lon = 180.0*phi/np.pi if np.any(lon < 0): lt0 = np.nonzero(lon < 0) lon[lt0] += 360.0 # convert to degrees and fix to -90:90 lat = 90.0 - (180.0*th/np.pi) np.clip(lat, -90, 90, out=lat) # return longitude, latitude and radius # flattened to singular values if necessary if singular_values: return (lon[0], lat[0], rad[0]) else: return (lon, lat, rad)
[docs] def to_geodetic( x: np.ndarray, y: np.ndarray, z: np.ndarray, a_axis: float = _wgs84.a_axis, flat: float = _wgs84.flat, method: str = 'bowring', eps: float = np.finfo(np.float64).eps, iterations: int = 10 ): """ Convert from cartesian coordinates to geodetic coordinates using either iterative or closed-form methods Parameters ---------- x, np.ndarray cartesian x-coordinates y, np.ndarray cartesian y-coordinates z, np.ndarray cartesian z-coordinates a_axis: float, default 6378137.0 semimajor axis of the ellipsoid flat: float, default 1.0/298.257223563 ellipsoidal flattening method: str, default 'bowring' method to use for conversion - ``'moritz'``: iterative solution - ``'bowring'``: iterative solution - ``'zhu'``: closed-form solution eps: float, default np.finfo(np.float64).eps tolerance for iterative methods iterations: int, default 10 maximum number of iterations """ # verify axes and copy to not modify inputs singular_values = (np.ndim(x) == 0) x = np.atleast_1d(np.copy(x)).astype(np.float64) y = np.atleast_1d(np.copy(y)).astype(np.float64) z = np.atleast_1d(np.copy(z)).astype(np.float64) # calculate the geodetic coordinates using the specified method if (method.lower() == 'moritz'): lon, lat, h = _moritz_iterative(x, y, z, a_axis=a_axis, flat=flat, eps=eps, iterations=iterations) elif (method.lower() == 'bowring'): lon, lat, h = _bowring_iterative(x, y, z, a_axis=a_axis, flat=flat, eps=eps, iterations=iterations) elif (method.lower() == 'zhu'): lon, lat, h = _zhu_closed_form(x, y, z, a_axis=a_axis, flat=flat) else: raise ValueError(f'Unknown conversion method: {method}') # return longitude, latitude and height # flattened to singular values if necessary if singular_values: return (lon[0], lat[0], h[0]) else: return (lon, lat, h)
[docs] def _moritz_iterative( x: np.ndarray, y: np.ndarray, z: np.ndarray, a_axis: float = _wgs84.a_axis, flat: float = _wgs84.flat, eps: float = np.finfo(np.float64).eps, iterations: int = 10 ): """ Convert from cartesian coordinates to geodetic coordinates using the iterative solution of :cite:t:`HofmannWellenhof:2006hy` Parameters ---------- x, np.ndarray cartesian x-coordinates y, np.ndarray cartesian y-coordinates z, np.ndarray cartesian z-coordinates a_axis: float, default 6378137.0 semimajor axis of the ellipsoid flat: float, default 1.0/298.257223563 ellipsoidal flattening eps: float, default np.finfo(np.float64).eps tolerance for iterative method iterations: int, default 10 maximum number of iterations """ # Linear eccentricity and first numerical eccentricity lin_ecc = np.sqrt((2.0*flat - flat**2)*a_axis**2) ecc1 = lin_ecc/a_axis # degrees to radians dtr = np.pi/180.0 # calculate longitude lon = np.arctan2(y, x)/dtr # set initial estimate of height to 0 h = np.zeros_like(lon) h0 = np.inf*np.ones_like(lon) # calculate radius of parallel p = np.sqrt(x**2 + y**2) # initial estimated value for phi using h=0 phi = np.arctan(z/(p*(1.0 - ecc1**2))) # iterate to tolerance or to maximum number of iterations i = 0 while np.any(np.abs(h - h0) > eps) and (i <= iterations): # copy previous iteration of height h0 = np.copy(h) # calculate radius of curvature N = a_axis/np.sqrt(1.0 - ecc1**2 * np.sin(phi)**2) # estimate new value of height h = p/np.cos(phi) - N # estimate new value for latitude using heights phi = np.arctan(z/(p*(1.0 - ecc1**2*N/(N + h)))) # add to iterator i += 1 # return longitude, latitude and height return (lon, phi/dtr, h)
[docs] def _bowring_iterative( x: np.ndarray, y: np.ndarray, z: np.ndarray, a_axis: float = _wgs84.a_axis, flat: float = _wgs84.flat, eps: float = np.finfo(np.float64).eps, iterations: int = 10 ): """ Convert from cartesian coordinates to geodetic coordinates using the iterative solution of :cite:t:`Bowring:1976jh,Bowring:1985du` Parameters ---------- x, np.ndarray cartesian x-coordinates y, np.ndarray cartesian y-coordinates z, np.ndarray cartesian z-coordinates a_axis: float, default 6378137.0 semimajor axis of the ellipsoid flat: float, default 1.0/298.257223563 ellipsoidal flattening eps: float, default np.finfo(np.float64).eps tolerance for iterative method iterations: int, default 10 maximum number of iterations """ # semiminor axis of the WGS84 ellipsoid [m] b_axis = (1.0 - flat)*a_axis # Linear eccentricity lin_ecc = np.sqrt((2.0*flat - flat**2)*a_axis**2) # square of first and second numerical eccentricity e12 = lin_ecc**2/a_axis**2 e22 = lin_ecc**2/b_axis**2 # degrees to radians dtr = np.pi/180.0 # calculate longitude lon = np.arctan2(y, x)/dtr # calculate radius of parallel p = np.sqrt(x**2 + y**2) # initial estimated value for reduced parametric latitude u = np.arctan(a_axis*z/(b_axis*p)) # initial estimated value for latitude phi = np.arctan((z + e22*b_axis*np.sin(u)**3) / (p - e12*a_axis*np.cos(u)**3)) phi0 = np.inf*np.ones_like(lon) # iterate to tolerance or to maximum number of iterations i = 0 while np.any(np.abs(phi - phi0) > eps) and (i <= iterations): # copy previous iteration of phi phi0 = np.copy(phi) # calculate reduced parametric latitude u = np.arctan(b_axis*np.tan(phi)/a_axis) # estimate new value of latitude phi = np.arctan((z + e22*b_axis*np.sin(u)**3) / (p - e12*a_axis*np.cos(u)**3)) # add to iterator i += 1 # calculate final radius of curvature N = a_axis/np.sqrt(1.0 - e12 * np.sin(phi)**2) # estimate final height (Bowring, 1985) h = p*np.cos(phi) + z*np.sin(phi) - a_axis**2/N # return longitude, latitude and height return (lon, phi/dtr, h)
[docs] def _zhu_closed_form( x: np.ndarray, y: np.ndarray, z: np.ndarray, a_axis: float = _wgs84.a_axis, flat: float = _wgs84.flat, ): """ Convert from cartesian coordinates to geodetic coordinates using the closed-form solution of :cite:t:`Zhu:1993ja` Parameters ---------- x, np.ndarray cartesian x-coordinates y, np.ndarray cartesian y-coordinates z, np.ndarray cartesian z-coordinates a_axis: float, default 6378137.0 semimajor axis of the ellipsoid flat: float, default 1.0/298.257223563 ellipsoidal flattening """ # semiminor axis of the WGS84 ellipsoid [m] b_axis = (1.0 - flat)*a_axis # Linear eccentricity lin_ecc = np.sqrt((2.0*flat - flat**2)*a_axis**2) # square of first numerical eccentricity e12 = lin_ecc**2/a_axis**2 # degrees to radians dtr = np.pi/180.0 # calculate longitude lon = np.arctan2(y, x)/dtr # calculate radius of parallel w = np.sqrt(x**2 + y**2) # allocate for output latitude and height lat = np.zeros_like(lon) h = np.zeros_like(lon) if np.any(w == 0): # special case where w == 0 (exact polar solution) ind, = np.nonzero(w == 0) h[ind] = np.sign(z[ind])*z[ind] - b_axis lat[ind] = 90.0*np.sign(z[ind]) else: # all other cases ind, = np.nonzero(w != 0) l = e12/2.0 m = (w[ind]/a_axis)**2.0 n = ((1.0 - e12)*z[ind]/b_axis)**2.0 i = -(2.0*l**2 + m + n)/2.0 k = (l**2.0 - m - n)*l**2.0 q = (1.0/216.0)*(m + n - 4.0*l**2)**3.0 + m*n*l**2.0 D = np.sqrt((2.0*q - m*n*l**2)*m*n*l**2) B = i/3.0 - (q + D)**(1.0/3.0) - (q - D)**(1.0/3.0) t = np.sqrt(np.sqrt(B**2-k) - (B + i)/2.0) - \ np.sign(m - n)*np.sqrt((B - i)/2.0) wi = w/(t + l) zi = (1.0 - e12)*z[ind]/(t - l) # calculate latitude and height lat[ind] = np.arctan2(zi, ((1.0 - e12)*wi))/dtr h[ind] = np.sign(t-1.0+l)*np.sqrt((w-wi)**2.0 + (z[ind]-zi)**2.0) # return longitude, latitude and height return (lon, lat, h)
[docs] def to_ENU( x: np.ndarray, y: np.ndarray, z: np.ndarray, lon0: float | np.ndarray = 0.0, lat0: float | np.ndarray = 0.0, h0: float | np.ndarray = 0.0, a_axis: float = _wgs84.a_axis, flat: float = _wgs84.flat, ): """ Convert from Earth-Centered Earth-Fixed (ECEF) cartesian coordinates to East-North-Up coordinates (ENU) Parameters ---------- x, np.ndarray cartesian x-coordinates y, np.ndarray cartesian y-coordinates z, np.ndarray cartesian z-coordinates lon0: float or np.ndarray, default 0.0 reference longitude (degrees east) lat0: float or np.ndarray, default 0.0 reference latitude (degrees north) h0: float or np.ndarray, default 0.0 reference height (meters) a_axis: float, default 6378137.0 semimajor axis of the ellipsoid flat: float, default 1.0/298.257223563 ellipsoidal flattening Returns ------- E: np.ndarray east coordinates N: np.ndarray north coordinates U: np.ndarray up coordinates """ # degrees to radians dtr = np.pi/180.0 # verify axes and copy to not modify inputs singular_values = (np.ndim(x) == 0) x = np.atleast_1d(np.copy(x)).astype(np.float64) y = np.atleast_1d(np.copy(y)).astype(np.float64) z = np.atleast_1d(np.copy(z)).astype(np.float64) # convert latitude and longitude to ECEF X0, Y0, Z0 = to_cartesian(lon0, lat0, h=h0, a_axis=a_axis, flat=flat) # calculate the rotation matrix R = np.zeros((3, 3)) R[0,0] = -np.sin(dtr*lon0) R[0,1] = np.cos(dtr*lon0) R[0,2] = 0.0 R[1,0] = -np.sin(dtr*lat0)*np.cos(dtr*lon0) R[1,1] = -np.sin(dtr*lat0)*np.sin(dtr*lon0) R[1,2] = np.cos(dtr*lat0) R[2,0] = np.cos(dtr*lat0)*np.cos(dtr*lon0) R[2,1] = np.cos(dtr*lat0)*np.sin(dtr*lon0) R[2,2] = np.sin(dtr*lat0) # calculate the ENU coordinates E, N, U = np.dot(R, np.vstack((x - X0, y - Y0, z - Z0))) # return the ENU coordinates # flattened to singular values if necessary if singular_values: return (E[0], N[0], U[0]) else: return (E, N, U)
[docs] def from_ENU( E: np.ndarray, N: np.ndarray, U: np.ndarray, lon0: float | np.ndarray = 0.0, lat0: float | np.ndarray = 0.0, h0: float | np.ndarray = 0.0, a_axis: float = _wgs84.a_axis, flat: float = _wgs84.flat, ): """ Convert from East-North-Up coordinates (ENU) to Earth-Centered Earth-Fixed (ECEF) cartesian coordinates Parameters ---------- E, np.ndarray east coordinates N, np.ndarray north coordinates U, np.ndarray up coordinates lon0: float or np.ndarray, default 0.0 reference longitude (degrees east) lat0: float or np.ndarray, default 0.0 reference latitude (degrees north) h0: float or np.ndarray, default 0.0 reference height (meters) a_axis: float, default 6378137.0 semimajor axis of the ellipsoid flat: float, default 1.0/298.257223563 ellipsoidal flattening Returns ------- x, float cartesian x-coordinates y, float cartesian y-coordinates z, float cartesian z-coordinates """ # degrees to radians dtr = np.pi/180.0 # verify axes and copy to not modify inputs singular_values = (np.ndim(E) == 0) E = np.atleast_1d(np.copy(E)).astype(np.float64) N = np.atleast_1d(np.copy(N)).astype(np.float64) U = np.atleast_1d(np.copy(U)).astype(np.float64) # convert latitude and longitude to ECEF X0, Y0, Z0 = to_cartesian(lon0, lat0, h=h0, a_axis=a_axis, flat=flat) # calculate the rotation matrix R = np.zeros((3, 3)) R[0,0] = -np.sin(dtr*lon0) R[1,0] = np.cos(dtr*lon0) R[2,0] = 0.0 R[0,1] = -np.sin(dtr*lat0)*np.cos(dtr*lon0) R[1,1] = -np.sin(dtr*lat0)*np.sin(dtr*lon0) R[2,1] = np.cos(dtr*lat0) R[0,2] = np.cos(dtr*lat0)*np.cos(dtr*lon0) R[1,2] = np.cos(dtr*lat0)*np.sin(dtr*lon0) R[2,2] = np.sin(dtr*lat0) # calculate the ECEF coordinates x, y, z = np.dot(R, np.vstack((E, N, U))) # add reference coordinates x += X0 y += Y0 z += Z0 # return the ECEF coordinates # flattened to singular values if necessary if singular_values: return (x[0], y[0], z[0]) else: return (x, y, z)
[docs] def to_horizontal( E: np.ndarray, N: np.ndarray, U: np.ndarray, ): """ Convert from East-North-Up coordinates (ENU) to a celestial horizontal coordinate system (alt-az) Parameters ---------- E: np.ndarray east coordinates N: np.ndarray north coordinates U: np.ndarray up coordinates Returns ------- alpha: np.ndarray altitude (elevation) angle in degrees phi: np.ndarray azimuth angle in degrees D: np.ndarray distance from observer to object in meters """ # calculate distance to object # convert coordinates to unit vectors D = np.sqrt(E**2 + N**2 + U**2) # altitude (elevation) angle in degrees alpha = np.arcsin(U/D)*180.0/np.pi # azimuth angle in degrees (fixed to 0 to 360) phi = np.mod(np.arctan2(E/D, N/D)*180.0/np.pi, 360.0) return (alpha, phi, D)
[docs] def to_zenith( x: np.ndarray, y: np.ndarray, z: np.ndarray, lon0: float | np.ndarray = 0.0, lat0: float | np.ndarray = 0.0, h0: float | np.ndarray = 0.0, a_axis: float = _wgs84.a_axis, flat: float = _wgs84.flat, ): """ Calculate zenith angle of an object from Earth-Centered Earth-Fixed (ECEF) cartesian coordinates Parameters ---------- x, np.ndarray cartesian x-coordinates y, np.ndarray cartesian y-coordinates z, np.ndarray cartesian z-coordinates lon0: float or np.ndarray, default 0.0 reference longitude (degrees east) lat0: float or np.ndarray, default 0.0 reference latitude (degrees north) h0: float or np.ndarray, default 0.0 reference height (meters) a_axis: float, default 6378137.0 semimajor axis of the ellipsoid flat: float, default 1.0/298.257223563 ellipsoidal flattening Returns ------- zenith: np.ndarray zenith angle of object in degrees """ # convert from ECEF to ENU E, N, U = to_ENU(x, y, z, lon0=lon0, lat0=lat0, h0=h0, a_axis=a_axis, flat=flat) # convert from ENU to horizontal coordinates alpha, phi, D = to_horizontal(E, N, U) # calculate zenith angle in degrees zenith = 90.0 - alpha # return zenith angle return zenith
def scale_areas(*args, **kwargs): warnings.warn("Deprecated. Please use pyTMD.spatial.scale_factors instead", DeprecationWarning) return scale_factors(*args, **kwargs)
[docs] def scale_factors( lat: np.ndarray, flat: float = _wgs84.flat, reference_latitude: float = 70.0, metric: str = 'area' ): """ Calculates scaling factors to account for polar stereographic distortion including special case of at the exact pole :cite:p:`Snyder:1982gf` Parameters ---------- lat: np.ndarray latitude (degrees north) flat: float, default 1.0/298.257223563 ellipsoidal flattening reference_latitude: float, default 70.0 reference latitude (true scale latitude) metric: str, default 'area' metric to calculate scaling factors - ``'distance'``: scale factors for distance - ``'area'``: scale factors for area Returns ------- scale: np.ndarray scaling factors at input latitudes """ assert metric.lower() in ['distance', 'area'], 'Unknown metric' # convert latitude from degrees to positive radians theta = np.abs(lat)*np.pi/180.0 # convert reference latitude from degrees to positive radians theta_ref = np.abs(reference_latitude)*np.pi/180.0 # square of the eccentricity of the ellipsoid # ecc2 = (1-b**2/a**2) = 2.0*flat - flat^2 ecc2 = 2.0*flat - flat**2 # eccentricity of the ellipsoid ecc = np.sqrt(ecc2) # calculate ratio at input latitudes m = np.cos(theta)/np.sqrt(1.0 - ecc2*np.sin(theta)**2) t = np.tan(np.pi/4.0 - theta/2.0)/((1.0 - ecc*np.sin(theta)) / \ (1.0 + ecc*np.sin(theta)))**(ecc/2.0) # calculate ratio at reference latitude mref = np.cos(theta_ref)/np.sqrt(1.0 - ecc2*np.sin(theta_ref)**2) tref = np.tan(np.pi/4.0 - theta_ref/2.0)/((1.0 - ecc*np.sin(theta_ref)) / \ (1.0 + ecc*np.sin(theta_ref)))**(ecc/2.0) # distance scaling k = (mref/m)*(t/tref) kp = 0.5*mref*np.sqrt(((1.0+ecc)**(1.0+ecc))*((1.0-ecc)**(1.0-ecc)))/tref if (metric.lower() == 'distance'): # distance scaling scale = np.where(np.isclose(theta, np.pi/2.0), 1.0/kp, 1.0/k) elif (metric.lower() == 'area'): # area scaling scale = np.where(np.isclose(theta, np.pi/2.0), 1.0/(kp**2), 1.0/(k**2)) return scale