Bibliography

[1]

D C Agnew. Earth Tides, pages 151–178. Elsevier, 2015. URL: https://doi.org/10.1016/b978-0-444-53802-4.00058-0, doi:10.1016/B978-0-444-53802-4.00058-0.

[2]

D C Agnew. An Improbable Observation of the Diurnal Core Resonance. Pure and Applied Geophysics, 175(5):1599–1609, May 2018. URL: https://doi.org/10.1007/s00024-017-1522-1, doi:10.1007/s00024-017-1522-1.

[3]

O B Andersen, S K Rose, and M G Hart-Davis. Polar Ocean Tides—Revisited Using Cryosat-2. Remote Sensing, 15(18):4479, September 2023. URL: https://doi.org/10.3390/rs15184479, doi:10.3390/rs15184479.

[4]

B R Bowring. TRANSFORMATION FROM SPATIAL TO GEOGRAPHICAL COORDINATES. Survey Review, 23(181):323–327, July 1976. URL: https://doi.org/10.1179/sre.1976.23.181.323, doi:10.1179/sre.1976.23.181.323.

[5]

B R Bowring. THE ACCURACY OF GEODETIC LATITUDE AND HEIGHT EQUATIONS. Survey Review, 28(218):202–206, October 1985. URL: https://doi.org/10.1179/sre.1985.28.218.202, doi:10.1179/sre.1985.28.218.202.

[6]

N Capitaine, J Chapront, S Lambert, and P T Wallace. Expressions for the Celestial Intermediate Pole and Celestial Ephemeris Origin consistent with the IAU 2000A precession-nutation model. Astronomy & Astrophysics, 400(3):1145–1154, March 2003. URL: https://doi.org/10.1051/0004-6361:20030077, doi:10.1051/0004-6361:20030077.

[7]

N Capitaine, P T Wallace, and J Chapront. Expressions for IAU 2000 precession quantities. Astronomy & Astrophysics, 412(2):567–586, December 2003. URL: https://doi.org/10.1051/0004-6361:20031539, doi:10.1051/0004-6361:20031539.

[8]

N Capitaine, P T Wallace, and J Chapront. Improvement of the IAU 2000 precession model. Astronomy & Astrophysics, 432(1):355–367, March 2005. URL: https://doi.org/10.1051/0004-6361:20041908, doi:10.1051/0004-6361:20041908.

[9]

D E Cartwright and A C Edden. Corrected Tables of Tidal Harmonics. Geophysical Journal International, 33(3):253–264, September 1973. URL: https://doi.org/10.1111/j.1365-246x.1973.tb03420.x, doi:10.1111/j.1365-246X.1973.tb03420.x.

[10]

D E Cartwright and R J Tayler. New Computations of the Tide-generating Potential. Geophysical Journal of the Royal Astronomical Society, 23(1):45–73, June 1971. URL: http://dx.doi.org/10.1111/j.1365-246X.1971.tb01803.x, doi:10.1111/j.1365-246X.1971.tb01803.x.

[11]

O L Colombo. Numerical Methods for Harmonic Analysis on the Sphere. Technical Report OSURF Proj. No. 711664, United States Air Force, 1981.

[12]

V Dehant and P M Mathews. Precession, nutation, and wobble of the Earth. Cambridge University Press, Cambridge, UK, 2015. ISBN 9781107092549.

[13]

S Desai. Observing the pole tide with satellite altimetry. Journal of Geophysical Research: Oceans, November 2002. URL: https://doi.org/10.1029/2001jc001224, doi:10.1029/2001JC001224.

[14]

S Desai, J Wahr, and B Beckley. Revisiting the pole tide for and from satellite altimetry. Journal of Geodesy, 89(12):1233–1243, December 2015. URL: https://doi.org/10.1007/s00190-015-0848-7, doi:10.1007/s00190-015-0848-7.

[15]

G Dietrich. General oceanography: an introduction. John Wiley & Sons, Inc., New York, New York, 2nd edition, 1980. ISBN 0471021024.

[16]

A T Doodson and H Lamb. The harmonic development of the tide-generating potential. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 100(704):305–329, December 1921. URL: https://doi.org/10.1098/rspa.1921.0088, doi:10.1098/rspa.1921.0088.

[17]

A T Doodson and H D Warburg. Admiralty Manual of Tides. His Majesty's Stationery Office, London, 1941.

[18]

J J Dronkers. Tidal Theory and Computations. Advances in Hydroscience, pages 145–230, 1975. URL: https://doi.org/10.1016/b978-0-12-021810-3.50007-2, doi:10.1016/B978-0-12-021810-3.50007-2.

[19]

G D Egbert and S Y Erofeeva. Efficient Inverse Modeling of Barotropic Ocean Tides. Journal of Atmospheric and Oceanic Technology, 19(2):183–204, February 2002. URL: https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

[20]

M G Foreman and R F Henry. The harmonic analysis of tidal model time series. Advances in Water Resources, 12(3):109–120, September 1989. URL: https://doi.org/10.1016/0309-1708(89)90017-1, doi:10.1016/0309-1708(89)90017-1.

[21]

M G G Foreman, J Y Cherniawsky, and V A Ballantyne. Versatile Harmonic Tidal Analysis: Improvements and Applications. Journal of Atmospheric and Oceanic Technology, 26(4):806–817, April 2009. URL: https://doi.org/10.1175/2008jtecho615.1, doi:10.1175/2008JTECHO615.1.

[22]

M G Hart-Davis, G Piccioni, D Dettmering, C Schwatke, M Passaro, and F Seitz. EOT20: a global ocean tide model from multi-mission satellite altimetry. Earth System Science Data, 13(8):3869–3884, August 2021. URL: https://doi.org/10.5194/essd-13-3869-2021, doi:10.5194/essd-13-3869-2021.

[23]

B Hofmann-Wellenhof and H Moritz. Physical Geodesy. Springer Vienna, 2006. ISBN 9783211335444. URL: https://doi.org/10.1007/978-3-211-33545-1, doi:10.1007/978-3-211-33545-1.

[24]

W G Horner and D Gilbert. XXI. A new method of solving numerical equations of all orders, by continuous approximation. Philosophical Transactions of the Royal Society of London, 109:308–335, 1819. URL: https://doi.org/10.1098/rstl.1819.0023, doi:10.1098/rstl.1819.0023.

[25]

L H Kantha and C A Clayson. Numerical models of oceans and oceanic processes. Volume 66. Academic Press, San Diego, CA, 2000. ISBN 0124340687.

[26]

G H Kaplan. The IAU Resolutions on Astronomical Reference Systems, Time Scales, and Earth Rotation Models: Explanation and Implementation. Technical Report USNO Circular 179, US Naval Observatory, 2005. URL: https://aa.usno.navy.mil/publications/Circular_179, doi:10.48550/arXiv.astro-ph/0602086.

[27]

G H Kaplan, J A Hughes, P K Seidelmann, C A Smith, and B D Yallop. Mean and apparent place computations in the new IAU system. III - Apparent, topocentric, and astrometric places of planets and stars. The Astronomical Journal, 97:1197, April 1989. URL: https://doi.org/10.1086/115063, doi:10.1086/115063.

[28]

J H Lieske, T Lederle, W Fricke, and B Morando. Expressions for the Precession Quantities Based upon the IAU (1976) System of Astronomical Constants. Astronomy and Astrophysics, 58:1–16, June 1977. URL: https://ui.adsabs.harvard.edu/abs/1977A&A....58....1L.

[29]

F H Lyard, D J Allain, M Cancet, L Carrère, and N Picot. FES2014 global ocean tide atlas: design and performance. Ocean Science, 17(3):615–649, 2021. URL: https://doi.org/10.5194/os-17-615-2021, doi:10.5194/os-17-615-2021.

[30]

P M Mathews, B A Buffett, T A Herring, and I I Shapiro. Forced nutations of the Earth: Influence of inner core dynamics: 1. Theory. Journal of Geophysical Research: Solid Earth, 96(B5):8219–8242, May 1991. URL: https://doi.org/10.1029/90jb01955, doi:10.1029/90JB01955.

[31]

P M Mathews, B A Buffett, and I I Shapiro. Love numbers for diurnal tides: Relation to wobble admittances and resonance expansions. Journal of Geophysical Research: Solid Earth, 100(B6):9935–9948, June 1995. URL: https://doi.org/10.1029/95jb00670, doi:10.1029/95jb00670.

[32]

P M Mathews, V Dehant, and J M Gipson. Tidal station displacements. Journal of Geophysical Research: Solid Earth, 102(B9):20469–20477, September 1997. URL: https://doi.org/10.1029/97jb01515, doi:10.1029/97JB01515.

[33]

J H Meeus. Astronomical Algorithms. Willmann-Bell, Inc., Richmond, VA, 1991. ISBN 0943396352.

[34]

O Montenbruck. Practical Ephemeris Calculations. Springer-Verlag, New York, NY, 1989. Provided by the SAO/NASA Astrophysics Data System. URL: https://ui.adsabs.harvard.edu/abs/1989pec..book.....M.

[35]

W H Munk, D E Cartwright, and E C Bullard. Tidal spectroscopy and prediction. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 259(1105):533–581, 1966. URL: https://doi.org/10.1098/rsta.1966.0024, doi:10.1098/rsta.1966.0024.

[36]

W H Munk and G J F MacDonald. The Rotation of the Earth: A Geophysical Discussion. Cambridge University Press, New York, 1960. ISBN 9780521104067. URL: http://www.cambridge.org/9780521104067, doi:10.1017/CB9780521104067.

[37]

L Padman and S Erofeeva. A barotropic inverse tidal model for the Arctic Ocean. Geophysical Research Letters, January 2004. URL: https://doi.org/10.1029/2003gl019003, doi:10.1029/2003GL019003.

[38]

L Padman, S Y Erofeeva, and H A Fricker. Improving Antarctic tide models by assimilation of ICESat laser altimetry over ice shelves. Geophysical Research Letters, November 2008. URL: https://doi.org/10.1029/2008gl035592, doi:10.1029/2008GL035592.

[39]

L Padman, M R Siegfried, and H A Fricker. Ocean Tide Influences on the Antarctic and Greenland Ice Sheets. Reviews of Geophysics, 56(1):142–184, March 2018. URL: https://doi.org/10.1002/2016rg000546, doi:10.1002/2016RG000546.

[40]

R S Park, W M Folkner, J G Williams, and D H Boggs. The JPL Planetary and Lunar Ephemerides DE440 and DE441. The Astronomical Journal, 161(3):105, March 2021. URL: https://doi.org/10.3847/1538-3881/abd414, doi:10.3847/1538-3881/abd414.

[41]

B B Parker. Tidal Analysis and Prediction. Technical Report NOS CO-OPS 3, National Oceanic and Atmospheric Administration, Silver Spring, MD, July 2007. Library of Congress Control Number: 2007925298. URL: https://tidesandcurrents.noaa.gov/publications/Tidal_Analysis_and_Predictions.pdf.

[42]

G Petit and B Luzum. IERS Conventions (2010). Technical Report 36, Bureau International des Poids et Mesures (BIPM), US Naval Observatory (USNO), 2010. URL: http://www.iers.org/nn_11216/IERS/EN/Publications/TechnicalNotes/tn36.html.

[43]

J Proudman. The Condition that a Long-Period Tide shall follow the Equilibrium-Law. Geophysical Journal International, 3(2):244–249, June 1960. URL: https://doi.org/10.1111/j.1365-246x.1960.tb00392.x, doi:10.1111/j.1365-246X.1960.tb00392.x.

[44]

D Pugh and P Woodworth. Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes. Cambridge University Press, 2014. URL: https://doi.org/10.1017/CBO9781139235778, doi:10.1017/CBO9781139235778.

[45]

R D Ray. A global ocean tide model from Topex/Poseidon altimetry: GOT99.2. Technical Report TM-1999-209478, NASA Goddard Space Flight Center, Greenbelt, MD, September 1999. URL: https://ntrs.nasa.gov/citations/19990089548.

[46]

R D Ray. On Tidal Inference in the Diurnal Band. Journal of Atmospheric and Oceanic Technology, 34(2):437–446, February 2017. URL: https://doi.org/10.1175/jtech-d-16-0142.1, doi:10.1175/jtech-d-16-0142.1.

[47]

R D Ray and S Y Erofeeva. Long-period tidal variations in the length of day. Journal of Geophysical Research: Solid Earth, 119(2):1498–1509, February 2014. URL: https://doi.org/10.1002/2013jb010830, doi:10.1002/2013JB010830.

[48]

Richard D Ray. Technical note: On seasonal variability of the M$_2$ tide. Ocean Science, 18(4):1073–1079, July 2022. URL: https://doi.org/10.5194/os-18-1073-2022, doi:10.5194/os-18-1073-2022.

[49]

J C Ries, R J Eanes, C K Shum, and M M Watkins. Progress in the determination of the gravitational coefficient of the Earth. Geophysical Research Letters, 19(6):529–531, March 1992. URL: https://doi.org/10.1029/92gl00259, doi:10.1029/92GL00259.

[50]

P Schureman. Manual of Harmonic Analysis and Prediction of Tides. Technical Report Special Edition No. 98, US Coast and Geodetic Survey, Washington, DC, 1958. URL: https://tidesandcurrents.noaa.gov/publications/SpecialPubNo98.pdf.

[51]

J L Simon, P Bretagnon, J Chapront, M Chapront-Touzé, G Francou, and J Laskar. Numerical expressions for precession formulae and mean elements for the Moon and the planets. Astronomy and Astrophysics, 282:663–683, February 1994. Provided by the SAO/NASA Astrophysics Data System. URL: https://ui.adsabs.harvard.edu/abs/1994A&A...282..663S.

[52]

J P Snyder. Map projections used by the U.S. Geological Survey. Technical Report Geological Survey Bulletin 1532, United States Geological Survey, 1982. URL: https://pubs.usgs.gov/publication/b1532, doi:10.3133/b1532.

[53]

D Stammer, R D Ray, O B Andersen, B K Arbic, W Bosch, L Carrère, Y Cheng, D S Chinn, B D Dushaw, G D Egbert, S Y Erofeeva, H S Fok, J A M Green, S Griffiths, M A King, V Lapin, F G Lemoine, S B Luthcke, F Lyard, J Morison, M Müller, L Padman, J G Richman, J F Shriver, C K Shum, E Taguchi, and Y Yi. Accuracy assessment of global barotropic ocean tide models. Reviews of Geophysics, 52(3):243–282, September 2014. URL: https://doi.org/10.1002/2014rg000450, doi:10.1002/2014RG000450.

[54]

E Taguchi, D Stammer, and W Zahel. Inferring deep ocean tidal energy dissipation from the global high-resolution data-assimilative HAMTIDE model. Journal of Geophysical Research: Oceans, 119(7):4573–4592, July 2014. URL: https://doi.org/10.1002/2013jc009766, doi:10.1002/2013JC009766.

[55]

S E Urban and P K Seidelmann, editors. Explanatory Supplement to the Astronomical Almanac. University Science Books, 3rd edition, 2013. ISBN 9781891389856.

[56]

J M Wahr. The Tidal Motions of a Rotating, Elliptical, Elastic and Oceanless Earth. PhD thesis, University of Colorado, Boulder, CO, 1979.

[57]

J M Wahr. Body tides on an elliptical, rotating, elastic and oceanless Earth. Geophysical Journal of the Royal Astronomical Society, 64(3):677–703, 1981. URL: http://dx.doi.org/10.1111/j.1365-246X.1981.tb02690.x, doi:10.1111/j.1365-246X.1981.tb02690.x.

[58]

J M Wahr. Deformation induced by polar motion. Journal of Geophysical Research: Solid Earth, 90(B11):9363–9368, September 1985. URL: https://doi.org/10.1029/jb090ib11p09363, doi:10.1029/JB090iB11p09363.

[59]

J M Wahr and T Sasao. A diurnal resonance in the ocean tide and in the Earth's load response due to the resonant free `core nutation'. Geophysical Journal of the Royal Astronomical Society, 64(3):747–765, March 1981. URL: https://doi.org/10.1111/j.1365-246x.1981.tb02693.x, doi:10.1111/j.1365-246X.1981.tb02693.x.

[60]

E W Woolard. Theory of the rotation of the earth around its center of mass. In Astronomical Papers Prepared for the Use of the American Ephemeris and Nautical Almanac. Washington, District of Columbia, 1953. United States Government Printing Office.

[61]

J Zhu. Exact conversion of earth-centered, earth-fixed coordinates to geodetic coordinates. Journal of Guidance, Control, and Dynamics, 16(2):389–391, March 1993. URL: https://doi.org/10.2514/3.21016, doi:10.2514/3.21016.

[62]

National Research Council. Satellite Gravity and the Geosphere: Contributions to the Study of the Solid Earth and Its Fluid Envelopes. The National Academies Press, Washington, DC, 1997. ISBN 978-0-309-05792-9. URL: https://doi.org/10.17226/5767, doi:10.17226/5767.